Reduction of Some Fractional Partial Differential Equations with Variable Coefficients and Exact Solutions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Linear fractional differential equations with variable coefficients

This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...

متن کامل

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Swarm Intelligence and Evolutionary Computation

سال: 2018

ISSN: 2090-4908

DOI: 10.4172/2090-4908.1000168